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A finite-difference scheme and a Galerkin scheme are compared with respect to a very 
accurate solution describing time-dependent advection and diffusion of air pollutants from a 
line source in an atmosphere vertically stratified and limited by an inversion layer. The 
accurate solution was achieved by applying the finite-difference scheme on a very relined grid 
with a very small time step. The grid size and time step were defined according to stability and 
accuracy criteria discussed in the text. It is found that for the problem considered the two 
methods can be considered equally accurate. However, the Galerkin method gives a better 
approximation in the vicinity of the source. This was assumed to be partly due to the different 
way the source term is taken into account in the two methods. Improvement of the accuracy 
of the finite-difference scheme was achieved by approximating, at every step, the contribution 
of the source term by a Gaussian puff moving and diffusing with the velocity and diffusivity of 
the source location, instead of utilizing a stepwise function for the numerical approximation of 
the S function representing the source term. 0 1985 Academic Press, Inc. 

Simulation of advection and diffusion of pollutants in environmental media are 
required for defining both planning and control strategies. In many situations, the 
problem is the dispersion of pollutants from a point source in a turbulent flow. A 
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classical mathematical model of this process is provided by the equation of mass 
conservation, which, neglecting removal processes, takes the form 

~+V*(UC)=V@VC)+Q@-xJ. (1) 

In (I), C is the mean (ensemble average) concentration of the pollutant considered, 
U is the mean flow velocity vector, B is the turbulent diffusivity tensor, Q is the 
emission rate of the point source located at (x,, y,, z,), and 6(.) is Dirac’s function. 

Equation (1) is based on the mixing length or gradient transport hypothesis [S], 
which, by analogy with molecular diffusion, assumes that the turbulent flux can be 
expressed as the product of an eddy diffusivity coefficient and the gradient of the 
mean concentration. The gradient transfer hypothesis implies that Eq. (1) can only 
resolve spatial and temporal variations of the concentration on scales larger than 
the respective Lagrangian scales of the turbulence. 

Limitations of the gradient transfer hypotheses are discussed by Corrsin [2], 
Lamb and Seinfeld [4], and other researchers. The present study is concerned with 
the problem of solving Eq. (1) by numerical methods. Both a finite-difference and a 
Galerkin scheme have been used to simulate ntlmerically the processes described by 
Eq. (1). The schemes considered are compared with respect to their application to 
the classical two-dimensional problem of dispersion of air pollutants from an 
elevated line source in the atmospheric boundary layer. For this specific problem, 
the finite-difference scheme is used to compute a very accurate solution by solving 
Eq. (1) on a highly relined grid and using an extremely small integration time step. 
This solution is considered to be a high-quality approximation of the exact solution 
in the sense that further refinement of the grid and of the time step left the results 
unchanged on the scale of accuracy discussed in this study. The finite difference and 
the Galerkin schemes are then applied to solve the same problem on coarse grids 
and with large time steps; the results are then compared with the relined solution. 
Finally, an improved method of treating the source term of Eq. (1) when finite dif- 
ferent schemes are applied is discussed. 

MATHEMATICAL MODEL 

The numerical schemes in this study were applied to a problem which can be 
considered to be a mathematical description of the dispersion of an inert air 
pollutant from a crosswind line source of infinite extent and uniform emission in an 
atmosphere vertically limited by an inversion layer. The x axis is taken along the 
wind vector (assumed to have components only in the horizontal plane) and the y 
dependence of the problem is neglected. If it is also assumed that the axes of the 
frame of reference chosen are the principal axes of the diffusivity tensor and that 
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ground and inversion layers completely reflect the diffusing material, the problem 
can be formulated as follows: 

g+Utz)g=K,$+; +Qh(z-z,)h(x-x,); (2) 

K %) 
zaZ ' z=O, H, CW 

C(x, z, t) = 0, x=+00, (2b) 

C(x, z, t) = 0, t = 0, PC) 

where H is the height of the inversion layer. Equation (2) is derived from Eq. (1) 
with the additional assumptions of constant horizontal diffusivity and wind and 
vertical diffusivity as functions only of the vertical coordinate. 

To generalize results given by the numerical solution to Eq. (2) and related boun- 
dary and initial conditions of Eqs. (2a)-(2c), the variables and parameters x, z, t, U, 
K,, K,, C have been expressed in units of H2U(H)/Kz(H), H, H2/Kz(H), U(H), 
H2 V2( H)/K,( H), K,(H), and Q/U(H) H, respectively. Use of these normalizing fac- 
tors leaves Eqs. (2)-(2~) formally unchanged except for the emission rate and the 
inversion layer height, which are both normalized to unity. 

FINITE-DIFFERENCE SCHEME 

The finite-difference scheme used is based on the method of fractional steps (see, 
for example, [lS], and, for application to problems similar to the one discussed 
here [16, 12, 133. According to this procedure, Eq. (2) is split into the following 
sequence of one-dimensional, normalized equations: 

$6(x-x,)d(z-z,), t3a) 

ac 
at- 

- -u?s; C(x, z, t) = 0, x = &-co, t3b) 

C(x, z, t) = 0, x = *co, 

KE 
= aZ =o, z=O,l. 

(3c) 

t3d) 

At each time step, the above equations are solved sequentially by taking as initial 
concentration the one obtained by solving the previous equation. Each of the above 
equations is numerically integrated over the time step At. The concentration field 
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obtained after integration to Eq. (3d) provides the initial condition to Eq. (3a) for 
the next time step. In practice, the processes described by Eqs. (3a)-(3d) are con- 
sidered to be separate occurrences at each time step. 

The source step is calculated by assigning a weighted distribution of the released 
material to the grid points surrounding the source at each time step. For advection 
and diffusion steps two simple, mass-conserving, second-order schemes are chosen, 
namely the one-step Lax-Wendroff and the standard Cranck-Nicolson schemes [9], 
respectively; 

C$ = CT, i- yik At/Ax AZ, (44 

(4b) 

(Ad) 

where yjk < 1 is a weighting factor depending on the position of the source with 
respect to the grid and 6/6x, d2/6x2, S/Sz(*S/Sz) are the standard second order cen- 
tered spatial difference operators. zrik = 1 is, of course, required to ensure con- 
sistency. Since strong spatial variations are only expected to occur in a narrow 
region close to the source location, higher than second-order advection schemes 

FIG. 1. Geometric description of the finite-difference scheme. ab is the trajectory of the pollutant par- 
ticle at level zk. 
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(see, for example, [ 1,6]) would only give significantly better results in this region, 
at least on the moderate level accuracy involved in this study. To compensate these 
errors as well as those arising from Eq. (4a) without losing the advantages of the 
Lax-Wendroff scheme in terms of simplicity and efficiency (e.g., full vectorization 
capability), an improved solution technique for the vicinity of the source is 
proposed (see below). 

A physical interpretation of the given splitting procedure can be illustrated as 
follows: 

The r.h.s. of Eq. (4b) can be interpreted as a second-order spatial interpolation of 
the concentration at the old time level at the position aik, which is located on the 
same characteristic as the point bik at the new time level (see Fig. 1). From 
Eqs. (4b)-(4d) it follows that, outside the source location, the new concentration 
field C;,+ ’ only depends on the old concentration field C,, defined along the same 
characteristics. That is, owing to the fractional step technique and the explicit treat- 
ment of the advection step, the algorithm simulates the diffusion process following 
the trajectories of the advected fluid elements, i.e., in a way close to the physical 
nature of the advective motion [14]. 

GALERKIN SCHEME 

The Galerkin scheme employed in this study is programmed on the same grid 
geometry used for the finite-difference scheme. A Galerkin scheme similar to the one 
discussed here has been applied by Melli [7]. 

The elements of the rectangular grid representing the integration domain are 
divided into triangles by means of diagonals. On the triangular elements thus 
obtained the set of linear isoparametric functions 4 is defined. The concentration is 
expressed as a linear combination of this set of functions, 

c= f cjqsj, (5) 
j=l 

where N is the total number of grid points used and Cj is the value of the concen- 
tration at the grid points. 

By substitution of Eq. (5) in Eq. (2) and application of the Galerkin principle 
[S], the following system of ordinary differential equations is obtained, 

+ 5 [JrKx#i$ cos Gl ds 
I 

cj= q&(x,, II,); i = 1, 2 ,..., N, 
j=l 

(6) 
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where 52 is the region of integration, r its boundary, s the curvilinear coordinate 
along r, and n the inward unit vector normal to lY It must be noted that boundary 
conditions of Eq. (2a) have already been used in deriving Eq. (6), leading to can- 
cellation of integrals along f containing vertical diffusion terms. The integrals 

s I- 
K,$, 2 cos x^n ds 

are computed in accordance with the assumption that concentration vanishes on 
lateral boundaries (the same assumption as used for the finite-difference scheme). 

Discretization of the time derivative by means of the Crank-Nicolson scheme 
leads to a system of linear algebraic equations which is solved by means of the 
Seidel iterative technique [3]. 

STABILITY AND ACCURACY 

The application of Von Neuman’s stability analysis to the fractional step 
procedure presented shows that the amplification factor of a Fourier concentration 
component is the product of the amplification factors of the single steps [lo]. The 
stability condition required by the scheme is therefore only the Courant condition 

This stems from the use of Lax-Wendroff scheme for the advection step. 
The computational dissipation associated with the Lax-Wendroff scheme is of 

higher order than Kc%‘/ax2 [6], where Kc is the generalized computational dif- 
fusion coefficient and the dispersion error is of third order in Ax [lo]. 

No additional stability limitations are introduced by the diffusion steps (4c), (4d) 
since the Crank-Nicolson scheme is unconditionally stable. However, to avoid 
negative overshooting of the high-order Fourier components the following restric- 
tions on At are also imposed for reasons of accuracy: 

(f-3) 

K,<l. 
AZ* 2 

The Galerkin scheme is unconditionally stable, the amplification factor being 
equal to one for any wave component. 
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REFINED SOLUTION 

Equations (2)-(2~) are solved with the above-defined finite-difference scheme for 
(in normalized units) 

K, = 10-4, 
&=ze-4(Z-1), 

u = p , 

over the region 0~x~2.4~ 10P2 and O<z< 1. 
To avoid errors arising from the imposed vanishing concentrations at the upwind 

and downwind boundaries, the analysis of the results is restricted to a subdomain 
smaller than the integration domain (see below). Experiments with larger 
integration domain than the one chosen did not significantly change the concen- 
traion field in the subdomain. 

The vertical eddy diffusivity chosen is the same as that adopted by Shir and Shieh 
[ 163; it can be considered representative of diffusion in a neutral atmosphere [ 15, 
17, 111. 

The integration region was described by 481 points in the horizontal axis and 97 
in the vertical axis, corresponding to Ax = 5 x 10 - ’ and AZ 2: 1.04 x lo- *, respec- 
tively. With At = 1.25 x lo-‘, the following values are obtained for Eqs. (7)-(9), 

urn,, At - = 0.25, 
Ax 

With the above parameters and grid geometry, the integration is carried out for 
3072 time steps for two different source heights z, = 0.25 and z, = 0.5 and horizontal 
position x, = 38 x 10e4. After this time, steady-state conditions are approximately 
established. 

RESULTS 

In this section, the solutions computed by te Galerkin and finite-difference 
schemes on coarser grids with larger time steps are compared with the one dis- 
cussed in the section entitled Refined Solution. This comparison is carried out in 
terms of root-mean-square deviations of the solutions given by the two schemes 
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from the relined solution. Specifically, the following normalized value of the root 
mean square of the deviations is used: 

112 
CC& z, t) - ‘Xx, z, ?)I2 dx dz 

I . 
1 

2 R II CJx, z, t) dx dz 
(10) 

Here A is the area of the already mentioned subdomain R of the integration 
region defined by 0.32x 10-2<x<2.24x 10P2, O,<z< 1. 

Note that the root mean square of the deviations is normalized, at a given time, 
to the mean concentration of the relined solution to obtain error estimates 
accounting for the increasing quantity of the pollutant emitted in the region con- 
sidered. 

Figure 2 depicts the normalized root mean square of the deviations defined by 
Eq. (10) for the source located at z, = 0.5. It shows the behaviour with increasing 
time of the normalized root mean square of the deviations for both the tinite-dif- 
ference (solid lines) and Galerkin schemes (dashed lines). 

For 61 x 13 grid points the Galerkin method is clearly more accurate than the 
finite-difference algorithm. This is essentially due to the higher discretization quality 
inherent in the scheme. This superiority is, however, reduced if coarser grids are 
used. If the source height is changed to z, =0.25, the two schemes are nearly 
equivalent, as shown in Fig. 3. 

Both Figs. 2 and 3 show that E,,,, decreases with time, which indicates a decreas- 
ing level of errors in the downwind direction. This is not surprising since the 
gradients of the concentration become smaller as the pollutant front moves away 

- FD 

---- GA 

24 72 144 216 266 360 364 
Time (X 10m4) 

FIG. 2. Time evolution of E,,, for the finite-difference and Galerkin schemes for grids of (31 x 7) 
points and (61 x 13) points. In both cases, the time step was taken equal to Ax. Source height =OS. 
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E mean 
- FD 

I ----GA 

0 
24 72 144 216 266 360 

7 

Time (X lOA 

FIG. 3. Same as Fig. 2, except that z, = 0.25. 

from the source. The situation is clearly depicted in Fig. 4, which displays the 
isolines of the percentage error 

for the source located at z, = 0.25 and a grid of 61 x 13 points. 
The isolines of Fig. 4 indicate that the area of small errors increases with increas- 

ing simulation time. The Galerkin method shows areas of small errors wider than 
the ones given by the finite-difference scheme. However, it also presents wider areas 
of larger errors close to the boundaries of the integration region. This explains the 
results of Fig. 3 and the reverse situation with respect to Fig. 2. Reducing the source 
height increases the error induced by the boundaries of the region in the Galerkin 
method. 

The results of Fig. 24 show that for large physical simulation times a reasonable 
approximation of the solution can be achieved with a limited number of points and 
a large time step. To guarantee a sufficiently accurate solution for a small 
simulation time, especially at points far from the source, the number of grid points 
must be increased and the time step shortened. It appears from the results presented 
that to avoid errors not much larger than 10% at ground level, the number of grid 
points should be of the order of 61 x 13 and the time step should be chosen in 
accordance with the stabilitity and accuracy requirements stated above. In reality, 
this is the level of discretization used in applications reported in the literature [ 163 
and [13]. 

Analysis of Fig. 4 also indicates that the Galerkin method is superior to the linite- 
difference scheme in approximating the concentration field in the region close to the 
source, where the maximum concentration gradients occur. This is because the dis- 
continuity introduced by the source term is somewhat smoothed out by the 
Galerkin method through the integration process leading to Eq. (6). In the finite- 
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FIG. 4. Time sequences of percentage error distribution for z, = 0.25. U, is the wind speed at source 
height. 

difference scheme, the source term is treated “empirically” by adding a contribution 
to the concentration in the points of the grid close to the source in such a way that 
at every time step the quantity At is injected in the region. This approach 
introduces large errors close to the source which, by virtue of the diffusion 
operator, are damped downwind from the source. Figure 4 finally shows that the 
finite-difference method seems to be producing small wave packets of small concen- 
tration errors in the regions with high gradients or high time variation rates of the 
concentration. Using a filtering algorithm would probably eliminate them, thus 
improving the optics of Fig. 4. However, it would not change any of the discussed 
results, since these errors practically do not exceed the 2% level, and also they 
affect only very narrow regions of the domain. 

On the basis of the results shown, the Galerkin method can be considered slightly 
superior to the finite-difference algorithm as far as accuracy is concerned. On the 
other hand, it requires more computational effort. In fact, it requires the solution of 
a seven-diagonal system equal in dimension to the total number of grid points 
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M x N, whereas the finite-difference method requires the solution of M tridiagonal 
systems of dimension N and N tridiagonal systems of dimension M. 

To reduce the errors of the finite-difference algorithm close to the source, an 
improved method of solution is discussed next. 

SOURCE TERM APPROXIMATION 

Owing to the linearity of Eq. (l), the diffusion process from a point source can be 
seen at time n At as the result of two processes. One is the diffusion process of the 
concentration field C, the other the diffusion process of the amount of pollutant 
j&d; 1)Ar Q(t’) dt’ released by the source in the time interval At. 

The above consideration suggests treating the problem as follows. For simplicity, 
let us examine the one-dimensional case with time-varying emission rate: 

ac 
at= -Ug+Kx$+Q(t)6(x,-x). (11) 

The concentration at the new time level C”+ ’ is approximated by the sum of two 
contributions C.‘” + ’ and Clrn+ ’ resulting from the solution of the same transport 
equation, but with two different initial conditions, 

C”” = Q”’ ‘I2 At 6(x -x,), (13) 

Cn+l=Cm+l+Cm+I 
aPPr (14) 

The intrinsic error associated with the superposition approximation can be shown 
to be of first order in At (see Appendix). 

Reduction to second order can be obtained if Eq. (13) is integrated over half a 
time step (see Appendix). However, numerical tests showed empirically that the 
results are more accurate if the same time interval At is chosen for both Eqs. (12) 
and (13). The reason for this behaviour is not clear to the authors. It may be 
related to the singularity at the source location, where the h-function produces a 
discontinuous derivative of the concentration. This discontinuity may be 
approximated more accurately if the material Q At, injected at any time step, is 
numerically advected over the full distance U At corresponding to its physical travel 
path. 

Since the initial values for Eq. (13) are independent of C, this equation need only 
be solved for one time step. In fact, the same normalized concentration field 
C ‘I* + ‘/en + ‘I2 is obtained for any n, provided U and K, are time-independent or 
vary in a time scale larger than that of the described transport process. Further- 
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more, one can use for Eq. (13) a liner grid than for Eq. (12) and integrate over m 
smaller time steps At,, where At, = At/m. Finally, Eq. (13) can be solved by a dif- 
ferent numerical or analytical method, which is more suited to treating a discon- 
tinuous source term. Owing to the superposition property, these arguments are, of 
course, valid for multiple source configurations as well. 

If wind velocity and diffusivity are approximated by their values at the source 
location and finite boundary effects are neglected,’ Eq. (13) has a standard Gauss 
solution, which, for a general 30 case, reads 

C 
rrn+ I _ Q nt1/2At 

- 8(7r At)3’2(KX,Ky~KZ~)1’2 exp 
(X-U, At-x,)’ 

- 4K, At 

_ (y- V, At-y,)’ (z- W,At-zJ2 
4K,: At - i 4KZsAt ’ (15) 

Values given by Eq. (15) must be normalized to guarantee that at every time step 
the amount JT,,~’ ,) dl Q(t’) dt’ is injected into the region. 

Results from the application of the above algorithm are shown in Fig. 5 and 6, 
which compare the root mean square of the deviations given by the finite-difference 
scheme as applied in Fig. 2 and 3 with that obtained by treating the source term as 
illustrated above. Figures 5 and 6 refer to a grid of 31 x 7 points and to a source 
located at z, = 0.5 and 0.25, respectively. The reduction of E,,,, is greater for short 
simulation times and becomes negligible for long simulation times, thus confirming 

E mean 
r 

2 

r 

1 

Finite Difference: 

- Source term approximated by 
a step function 

---- Source term approximated by 
a pseudo-analytical solution 
to equation I131 Isee text) 

Source height = 0.5 

, 
24 72 144 216 266 360 

Time (X 10P4) 

FIG. 5. Comparison of E,,,, given by the finite difference (solid line) for a grid of (31 x 7) points and 
source height =0.5 (same as in Fig. 2) with the E,,.” achieved by treating the source term as proposed in 
the text (broken line). 

’ Equation (15) can be modified easily to account for reflective boundaries. 
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E mean 
Finite Difference: 

- Source term approximated by 
a step function 

- - - - Source term approximated by 
a pseudo-analytical solution 
to equation (131 (see text) 

Source height = 0.25 

1 
i 

1 \ \ 

Time (X 10e4) 

FIG. 6. Same as for Fig. 5, except that z, = 0.25. 

that errors in the treatment of the source term are computationally damped by the 
diffusion operator downwind from the source. 

Errors introduced by approximating wind velocity and diffusivity by their values 
at the source location could be reduced by using more accurate solutions than the 
one given by Eq. (15). Since improvement of the accuracy is primarily to be expec- 
ted close to the source, the suggested algorithm should be particularly efficient in 
multiple-source problems. 

CONCLUSION 

A finite-difference and a Galerkin scheme are used to solve numerically a boun- 
dary value problem describing advection and diffusion of air pollutants from an 
elevated line source in an atmosphere vertically limited by an inversion layer. 

Comparison of the results given by the two schemes with a very accurate solution 
indicates that for both methods the grid spacing and integration time step ought 
not to exceed the limits discussed in the text to ensure a sufficiently accurate 
numerical solution, i.e., to avoid a percentage error much larger than 10% for 
significant values of the solution. Within this moderate level of overall accuracy, 
application of the two methods to the problem discussed in this paper give nearly 
equivalent results. 

The Galerkin method, however, is better than the finite-difference scheme at 
describing the region close to the source for short simulation times. The two 
schemes prove equivalent for simulation times approaching the steady state. 

The errors presented by the finite-difference scheme in points close to the source 
can be ascribed to the inaccurate estimation of the contribution given at every time 
step by the source term. By improving such an estimation deviation of the finite-dif- 
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ference solution from the accurate one could be reduced. The proposed treatment of 
the source term by increasing the accuracy of the solution close to the source 
appears relevant to multiple source situations. 

APPENDIX 

Taylor’s expansion of C in AZ and substitution of C,, C,, from Eq. (11) and its 
time derivative yield for the concentration at the new time level: 

C 

(Al) 

The corresponding expressions for C”‘+ ‘, Clrn+ ‘, derived by using Eqs. (12), (13), 
read 

C -f-J;+K,$ c’” + O( At’3) 

(AZ) 

C “n+l=At - &+KX-$ +$; QV(x-x,)+O(At”At2) (A3) ) 1 
where the expansion 

(A4) 

has been used. Comparison of the exact solution C” + ’ to the solution obtained by 
superposition C”+ ’ + c”” + I gives 

IC”+l-(C’n+l+C”n+l)/=O(At) 
for 

i 

At’ = At, 
At At” = At, (A5) 

IC”+‘-(C’“+1+C”“+1)I=O(At2) 
for 

At’ = At, 
At At” = At/2. (A61 

These expressions show that first or second order accuracy is obtained by 
integrating Eq. (13) over a full or half time step, respectively. 
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